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Liquid volume flux in a weak bubble plume 
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A method has been devised for measuring the volume flux in a bubble plume in a 
homogeneous liquid. Laboratory experiments on weak bubble plumes using the 
method determined the flux as a function of height and gas flow rate for air flow rates 
between 0.41 and 6.25 cc/s. It was found that volume flux was proportional to the 
square-root of air flow and increased linearly with height. From measurement of 
bubble velocity it is concluded that the individual bubble wakes make an important 
contribution to the entrainment. 

1. Introduction 
Continuous injection of air from a source in a homogeneous liquid produces a 

stream of bubbles which entrains the liquid and carries it upward to the free surface, 
as sketched in figure 1. Near the source is a region of flow establishment, where the 
bubbles are accelerating and the plume structure changing rapidly. Above that is a 
highly turbulent region of ‘established flow ’, and near the surface the entrained fluid 
is expelled in a radial current. The focus of this paper is on the established flow 
region. 

Bubble plumes have been studied over a range of water depths from centimeters 
by Durst et al. (1986) to tens of meters by Milgram (1983). In  this study the depth 
was about 0.5 m and the air flow was between 0.41 and 6.25 cm3/s referenced to  
standard conditions. Both of these are small compared with the values used in the 
majority of reported studies of bubble plumes but these are typical of the weakest 
bubble plumes used in the chemical industries. Bubble plumes are used to mix fluids 
which are very hot or toxic, or which must be sealed from particular gases such as 
oxygen. In  very hot liquids the flow velocities must be kept small to avoid high local 
heat transfer from the walls, and in other cases expensive gases such as argon are 
used to  avoid oxidizing the liquid. I n  all cases the liquid volume flux has been the key 
property of interest. It is usually evaluated by measuring the velocity in the plume 
a t  a number of points and integrating over the cross-section. In  addition to being 
time-consuming, this method suffers from inaccuracies because bubble plumes are 
subject to the lateral wandering noted by Baines & Hamilton (1959). 

The present work describes a method of measurement of the liquid flux of a bubble 
plume which is adapted from the technique for the measurement of the volume flux 
in a turbulent buoyant plume described by Baines (1983). An interface between an 
upper stratified fluid and a lower homogeneous fluid is established in a closed 
container in which air bubbles are introduced from a source on the floor. The liquid 
flux in the plume a t  the level of the interface can be found by mass conservation from 
the movement of the interface. This principle is described more fully in $ 2 .  In $3  
experiments that have utilized the technique, plus some others that measure 
additional properties of the plume, are described. In $4 the results are given, and in 



78 A . M .  Leitch and W .  D .  Baines 

t 
Gas flow 

FIGURE 1. Schematic diagram of a bubble plume. 

95 the results and implications for the plume structure are discussed. Section 6 
contains a comparison with other investigations, followed in the final section by the 
conclusions. 

2. Principle of the technique 
Consider a turbulent bubble plume in a stratified, confined fluid. The lower region 

is homogeneous and the upper is lighter and may contain a stable gradient. A weak 
interface xi separates the two regions. The bubbles rising in the homogeneous region 
establish a shear flow which entrains environment fluid. Because of the relatively 
large momentum of this plume and the relatively weak density difference a t  the 
interface, the liquid flow is not deflected as a lateral current a t  the interface. It 
penetrates and, because of its turbulence, mixes with the lighter fluid it entrains from 
above the interface. All the plume fluid remains above xi because it is less dense than 
the homogeneous fluid in the lower layer. This behaviour is evident in figure 2, which 
is a shadowgraph of a typical experiment. The interface xi is the weaker lower 
interface. The stronger, upper interface is explained in the next section. How the 
mixed fluid is eventually distributed above zi is not important, it is only important 
that traffic across the lower interface be one-way. Conservation of mass requires that 
the flux in the plume, QL is balanced by a downward motion of the interface. 

dzi 
QL(xi) = - A -  

dt ’ 

where A is the area of the tank and t time. This assumes that the area of the plume 
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FIQURE 2.  Bubble plume and interfaces shown in a shadowgraph taken during experimental 
PF9. Note the thick upper original interface and the thin lower interface which is used to 
determine &,(z). 

is negligible compared with A .  The method of measuring QL involves recording xi as 
a function of time to  find the descent rate dzi/dt. The procedure is similar to that used 
by Baines & Turner (1969) to determine the entrainment coefficient of a pure plume. 

This method differs from the one used by Baines (1983) in the utilizati'on of the 
interface velocity instead of the interface position. If a discharge QL(zi) is introduced 
into the lower layer the interface comes to rest a t  the elevation xi. Attempts were 
made to use this second method in a few tests, but difficulties were encountered 
because the region above xi contains a density gradient which becomes weaker with 
time. To obtain a true steady state, it  would be necessary to introduce fresh fluid and 
extract brine evenly throughout the gradient, whereas our equipment allowed 
introduction and extraction of fluid only a t  specific levels. An additional problem was 
disturbance of the weak interface by the circulation due to the input. Results 
obtained showed reasonable agreement with those described below. 

Inasmuch as the bubble plume is a free turbulent shear flow like a wake, plume or 
jet the volume flux probably follows a power law 
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where z is height above the source, and B and m are constants determined from 
experiment or derived from conservation equations. For a buoyant plume or jet from 
a point source dimensional considerations suffice to show that m is Q or 1 respectively. 
The parameter m measures the entrainment rate or volume influx per unit height ~ 

that is, the rate at which the environment fluid is engulfed. For m > 1,  it increases 
with height and for m = 1 the entrainment rate is constant. If 0 < m < 1 the inflow 
from the environment decreases with height and if m < 0 the flow is detraining. This 
cannot occur in a homogeneous environment since it requires infinite volume flux in 
the plume a t  x = 0. 

There are similarities between a turbulent single-phase buoyant plume and a 
bubble plume. Both are driven by buoyancy and spread by the engulfing of quiescent 
environment fluid by turbulent eddies. It is reasonable to expect similar behaviour 
in the two types of plume in the region where the flow is established, although there 
cannot be an exact analogy. However, in the region of flow establishment the bubble 
plume is more complex and is not well understood. This is the region close to the 
source where the bubbles accelerate to the terminal velocity. For simplicity only the 
established flow region will be considered, and i t  will be assumed to originate a t  a 
'virtual origin' which may be above or below the actual source. Thus the volume flux 
of the plume is defined by 

where zo is the height of the virtual origin. 

interface as a function of time yields 

(3) QL = B ( z - z o ) m  

Combining ( 1 )  and (3), setting z = zi and integrating to give the height of the 

B 
A cl-m = l-(l--m)--H"-'t (m =i= 11, (4a) 

5 = e-gt (m = I ) ,  (4b) 
where 5 = ( z i - z o ) / H  and H+zo is the height of the interface a t  t = 0. Numerical 
values of m, B and zo are derived in $4 by finding best fits for the measured values 
of z as a function of time. 

3. Experiments 
The experiments were performed in a square Perspex tank of side 40.5 cm and 

height 80 cm sketched in figure 3. The bubble nozzle was the end of a Teflon capillary 
tube with an internal diameter of 0.038 cm and a length of 15 cm which was set in 
a holder in the middle of the tank floor. The pressure fluctuations associated with 
bubbling were small compared with the drop through the capillary so the gas flow 
rate was constant. The tip of the nozzle was about 2 mm above the top of the holder, 
and the holder could be moved up and down relative to  the floor of the tank. The 
nozzle was attached to a bottle of compressed nitrogen and the flow rate controlled 
by a regulator valve. 

The eight experiments listed in table 1 were run with gas flow rates between 0.41 
and 6.25 cc/s. These are small compared with 63 cc/s, the lowest flow rate used by 
Tacke et al. (1985), and very small compared with the gas flow rates of 200 to  
59000 cc/s in the larger scale bubble plume experiments reported by Milgram (1983), 
so the flow is clearly in a different regime to  other investigations. The liquid flux 
was measured over plume heights of 22 to 47 cm. I n  every case the submergence of 
the source was very small compared with the atmospheric head of 10.2 m so the effect 
of expansion of the bubbles has not been considered in the data presentation or 
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Experiment 

PF16 
PF9 
PFlO 
PF7 
PF12 
PF8 
PF11 
PF14 

Q,(CC/S) 

6.25 
3.30 
1.61 
1.57 
1.07 
0.48 
0.42 
0.41 

Run time 
H(cm) (rnin) 

47.0 11  
30.5 13 
30.3 19 
26.5 15 
44.0 48 
29.6 25 
21.6 120 
41.0 45 

Ps(g/cd 
1.08 
1.08 
1.04 
1.08 
1.08 
1.07 
1.08 
1.02 

Re, 
=PdBwSfp Eo 

850 2.5 
1100 4.4 
890 2.3 
890 2.3 
790 2.3 
640 1.4 
630 1.4 
630 1.4 

dB(Cm) 
0.42 
0.56 
0.41 
0.41 
0.41 
0.32 
0.32 
0.32 

TABLE 1 .  Summary of experimental conditions, with d, = 0.038 cm, p = 1.02-1.08 g/cc, 
p = 1.05-1.23 x g/cm s, u = 74-16 dynes/cm 

analysis. The data were gathered over periods from 11 min to 2 h. The density of the 
brine was 1.08 g/cc, except for experiments PFlO and PF14, which were designed as 
a check on the possible influence of ps, the density of the lower homogeneous layer. 

The size of the bubbles is a function of the nozzle diameter d,, the gas flow rate Q, 
and the properties p,  Ap,  g,  u and ,u (respectively the liquid density, density difference 
between liquid and gas, acceleration due to gravity, bubble-liquid surface tension 
and liquid viscosity) of the gas-liquid system ; see table 1. As the flow rate increases, 
the average size of the bubbles increases and there is less uniformity of size. I n  these 
experiments the bubbles were seen to be of uniform size except a t  the highest gas flow 
rate. This can be seen in figure 4, which presents photographs of the plume a t  two 
air flow rates. In both figures the bubbles are uniformly sized, fairly evenly 
distributed and have the same lateral spread. In figure 4 ( b )  the sizes are larger. Also 
evident is the liquid plume which was made visible by dye introduced near the 
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FIGURE 4. Photographs of bubble plumes in homogeneous environment. 
( a )  &, = 0.43 cmS/s, ( b )  &, = 2.87 em3//.. 
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source. There is not a large difference in the size and structure between the cases. In 
investigations with larger gas flow rates a wider distribution of bubble sizes was 
observed and the bubbles occupied more of the liquid plume cross-section. 

The bubble sizes listed in table 1 were calculated from measured gas flow rate, 
bubble rise speed and number of bubbles present : 

where VB = mean bubble volume (0.0154.092 cc), N = mean number of bubbles,per 
unit difference in elevation. These agree within 20% with those predicted in figure 
12.1 of Clift, Grace & Weber (1978), except for the largest flow rate. This volume is 
predicted better by an empirical relation derived by Leibson et al. (1956) 

I& = 0.29dk5 (6) 

Clift et al.'s book is not concerned with bubble interactions and the smaller observed 
bubble volume for QB = 6.25 is presumably due to breakup of larger bubbles by the 
turbulence in the plume. Estimates of bubble size from photographs agreed 
reasonably well with the calculations. It was observed in other experiments that the 
bubble size and lateral spread varied with the cleanliness of the source tube, but the 
bubbles did not change during the course of an experiment. 

The shape, size and rise velocity of bubbles in liquids are related by dimensionless 
numbers expressing the relative importance of inertia, surface tension and viscosity. 
Figure 2.5 of Clift et al. (1978) gives the Reynolds number and shape of isolated 
bubbles as functions of the Eotvos number, Eo = gApdk/a, and the Morton number, 
Mo = gp4Ap/p2a3. For the present experiments Eo was between 1.2 and 4.4, and Mo 
was about 4 x lo-", and the figure predicts that the bubbles should be wobbling 
ellipsoids. This was confirmed by photographs. The predicted Reynolds numbers 
were in agreement with those given in table 1. 

Additional useful information on the behaviour of single bubbles given in Clift 
et al. (1978) includes the ellipsicity (height-to-width ratio) as a function of Eo (their 
figure 7.8), and the drag coefficient as a function of Re (their figure 7.2). It is 
mentioned that between Re = 565 and 1510, bubbles rise in zigzag or helical paths as 
a result of vortex shedding in the wake. Surface-active impurities can prevent 
internal circulation, so that below Eo of about 4, bubbles behave more like rigid 
bodies (Harper 1972). 

Before the start of an experiment the tank was filled to a depth of40 to 60 cm with 
brine, usually with a concentration of 1 1  wt % (p  x 1.08 g/cc). Fresh tap water was 
dribbled gently onto the top of the brine through a floating sponge, adding a further 
20 cm to the total water depth. The interface region between the brine and fresh 
water was initially about 5 ern thick. This is the strong upper interface zu seen in 
figure 2 .  

As the bubble flow started a second, lower interface zi developed as sketched in 
figure 3. This is formed as a consequence of the liquid plume impinging on the layer 
of light fluid. The plume splits as it passes through zu with a central core of liquid 
carried to the free surface where it is deflected, and mixes uniformly with the lighter 
fluid. The outer zone of the plume has insufficient momentum for complete 
penetration of the interface and is deflected downwards and sideways, entraining 
some of the lighter fluid. The resulting mixed fluid comes to rest below zu and its 
lower surface forms zi. 

As time proceeds the mixed outer-zone liquid continues to accumulate above zi, 
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pushing this lower interface downwards. The plume does not split as it passes 
through zi because of the very weak density step across it. 

As the air flow was decreased or the initial density difference across z,, was 
increased, the intensity of zi was reduced. After a certain point, a distinct lower 
interface did not form. The reason could be deduced from observing the outer-zone 
fluid impinging on zu .  If its momentum was too small there would be little 
entrainment of light fluid and the entrained fluid would not be completely mixed 
with the plume fluid. Thus there would not be a distinct layer of mixed fluid with a 
distinct lower surface. A criterion for the limit of formation of a lower interface can 
be devised by calculating a Froude number expressing the ratio of plume momentum 
to interface buoyant force : W 

where b is the liquid plume radius. In these experiments it was found that if 
Fri < 0.6 a sharp lower interface did not form. Dyeing the upper-layer fluid allowed 
the mixed layer to be traced when the refractive index changes were too small to 
detect. For very low gas flow rates, the dye revealed large lateral variations in the 
position of the lower interface and an average height zi was consequently very 
difficult to  determine. To some extent it was possible to  get around the limit for low 
air flows by using a large Q, which produced a large liquid veiocity w until zi formed 
and then reducing the air flow. The outer-zone fluid can then cross the lower interface 
and mix with the stratified fluid as it rises and sinks in the weak gradient. However, 
the mixing of the plume fluid with the stratified fluid resulted in a very weak 
interface. 

Flow visualization employed the shadowgraph technique. An interface is a region 
of rapidly changing refractive index, so light from a projector is bent downwards into 
the denser liquid leaving a dark shadow above a bright band. If the light source is 
level with the interface (2, = zi in figure 3) then the top of the shadowed region marks 
the approximate position of the interface. If x ,  =I= zi, the interface position can be 
found from the apparent position 2, by 

r T 7  1-1 

zi-z, = (zp-z,) l + n -  , I ;j - 

where n ( =  1.34-1.35 in our experiments) is the refractive index, X, the length of t8he 
tank and X, the distance of the light source from the tank. In  these experiments, if 
the height z ,  of the projector had not been varied then, as xi changed by 25 cm, zi - z,  
would vary by about 1.5 cm. This is much greater than the reading error in the 
interface position. The height of the interface was recorded on photographs taken at 
intervals of 10 s to 2 min. 

Measurements were taken of the plume widths and the bubble rise velocities in a 
homogeneous liquid 70 cm deep to give additional information on the plume. Dye 
was injected slowly and continuously into the plume just above the nozzle for 
measurements of the width of the liquid plume. The dye was quickly distributed by 
turbulence and marked the outline of the plume as it rose. Fast shutter speed 
(<1/500s) photographs shown in figure 4 ( a ,  b )  served the double purpose of 
revealing the outline of the liquid plume and the distribution of bubbles. Similar 
dyeing of jets and buoyant plumes by Baines (1975) had shown that the average 
position of the irregular edge marked a radius of 1.46. It is reasonable to expect that 
a similar relationship might hold for the bubble-driven flow and that the visualization 
would allow us to  compare the relative widths of the plume for different bubble flow 
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rates. The width of the bubble plume along the axis was also measured from the 
photographs. 

Streak photographs of the bubbles were taken using shutter speeds of between 
1/15 and 1/60 s when the plume was illuminated from the side through a slot. The 
light reflected off each bubble as a bright spot, the intensity of which was found to 
be largest a t  an angle of 135" from the line between the projector and the bubble 
plume. The length of the streaks gave the absolute rise velocity of the bubbles wB. 

4. Results 
The data on the position of the interface zi as a function of time were read from 

shadowgraph negatives and then fitted to a function of the form of equation (4a). 
m and zo were varied over the range 0.5 to 2 and 5 cm to - 5 cm respectively. The best 
fit to the data was chosen as the one that gave the smallest r.m.s. error between 
measured and predicted zi, rather than that for which the equation was best satisfied, 
since the equation becomes identically zero form = 1. Generally there were a number 
of combinations of m and zo that gave good agreement, and the range of the results 
in table 2 reflects this. Outside the quoted range the fitted curve disagreed with the 
measurements of zi by more than half a centimeter. 

The clustering of the results around m = 1 is remarkable and consistent enough to 
conclude that the liquid flux QL does increase linearly above a virtual origin: 

i.e. 

(equation (4b)). The uncertainty in the location of the virtual origin with respect to 
the nozzle tip is due both to the uncertainty in the best fit and to the finite size of 
the lower interface. In general the virtual origin is closer to the actual origin for 
higher values of QB. This is reasonable since for small QB the plume may be laminar 
a t  lower elevations. For bubble flow rates of 1 cc/s or less, the bubbles rose for about 
2.5 cm in a steady spiral before spreading laterally and ascending more randomly. 

Assuming that m = 1 ,  optimum values for zo and B can be found by fitting the data 
to a function of the form of equation (4b). The data for four of the experiments are 
shown in figure 5 together with the calculated lines of best fit. Table 3 shows that the 
confidence limits on B and zo are small. 

In  figure 6 the parameter B is plotted as a function of the gas flow rate Q ,  on a log 
scale. The results are well represented by the line 

I (10) B = (5.0f0.15)Qi 0 5 t 0 . 0 5  

and so we can summarize our results for the liquid flux in bubble plumes for gas flow 
rates between 0.41 and 6.25 Ncc/s and for heights of up to 47 cm by 

In drawing the line in figure 6 more weight was given to the results a t  higher flow 
rates because the reading errors were less. Notice that, as is also indicated in tables 
2 and 3, the data for PFlO follow exactly the same trend as the others, although a 
lower-density brine was used in this experiment. The density of the brine relative to 
water is only 4 %  lower so it is not surprising that the plume volume flux should be 
similar, but the density difference between the upper and lower interface has been 
reduced by a factor of two. This is a check on the technique. 
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Experiment Q ,  
PF16 6.25 
PF9 3.30 
PFlO 1.61 
PF7 1.57 
PF12 1.07 
PF8 0.48 
PF11 0.42 
PF14 0.41 

m 

0.95 + O . l  
1.0 20.1 

0.95 +O.  1 
1 . O _ + O . l  
1.0 50.1 

1.05 & O . l  
1.05 +O.l 
1.05 50.1 

z,(cm) 

0.25 f0.15 
0.1 k0.2 
0.5 f 0.3 
0.7 k0.5 
0.5 k0.3 
1.3f0.4 
0.8f0.2 
1.3k0.4 

B 
14.3 f 4.1 
8.9 & 2.2 
7.5+1.0 
6.3 f 2.0 
5.4f1.5 
3.3f0.9 
3.1 k0.6 
3.6k1.0 

TABLE 2. Best fits of m, zo and B to the data 

FIGURE 5.  The normalized position of the interface zi as a function of time for four experiments : 
A, Q,  = 0.422 cm3/s; 0 ,  Q,  = 1.07 cm3/s; ., Q,  = 1.61 cm3/s; +, QB = 3.30 cm3//s. The lines are 
best fits to the data, assuming the relation 5 = exp ( - @ / A )  t ) .  

The difference between average bubble velocities and slip velocity is shown in 
figure 7. The absolute velocities were calculated from streak photographs and their 
accuracy is limited by the precision of the camera shutter speed. Except in the first 
few centimeters above the nozzle where the streak lengths were difficult to measure 
there was no significant change in the bubble velocity with height and so the 
velocities are shown as a function of QB only. The slip velocity was determined from 
the terminal rise velocity of bubbles in stagnant tap water which was determined by 
Haberman & Morton (1954) as a function of bubble size. For the range of bubble sizes 
in the experiments the rise velocity is constant at about 23 cm/s. Goossens (1979) 
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Experiment &, z,(cm) B 

PF16 6.25 0.2510.3 12.5f0.4 

PFlO 1.61 0 .5f0 .3  6 .4f0 .4  
PF7 1.57 0 .7k0.3  6.3f0.4 
PF12 1.07 0 .5f0 .3  5.4k0.3 
PF8 0.48 1.310.3 4.1f0.5 
PFll  0.42 0.8f0.3 3.510.5 
PF14 0.41 1.45f0.3 4.2k0.5 

TABLE 3. Best fits for zo and B given m = 1 

PF9 3.30 -0.1 f 0 . 3  9.1f0.5 

loo 1 

1 1  I I I I I 1 1 1 1  I I I I I I l l 1  I I I I 1  I l l  

0.1 1 10 100 

FIGURE 
QB (cm3/s) 

The parameter B +fined as a function of bubble flow rate QL = B(z-2,). The .--ie is 
the equation B = 5@; x , Goossens (1979). Other symbols defined in figure 5. 
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mentions that the slip velocity of closely spaced bubbles is greater than it is in 
stagnant water owing to the interaction of the bubbles, and quotes a relation 

ws = Wsstag(l  -v, (12) 

where n is between 2.4 and 3. In  our experiments the void ratio E (except very close 
to the nozzle) is only a few percent and so this effect was discounted. Since the 
bubbles are concentrated in the centre of the plume, iijB - ws gives a measure of the 
maximum velocity in the liquid plume. This increased with QB. Note that the slip 
velocity was about twice the water velocity in every case. The line on figure 7 fits the 
formula w = 11.3Q0,.37 

It is the best fit line to the crosses and will be explained in the next section. 
Measurement of the width of the liquid plume was rendered difficult by plume 

wandering and for Q B  < 1 cc/s the intensity of turbulence was small and a distinct 
edge of the plume could not be seen. There appeared to be a slight increase with 
bubble flow rate, but overall the apparent visual width was given by 

(13) 

b, = (0.440.1) z ~ . ~ ~ * ~ . ~ ~ .  (14) 

For bubble flow rates 2 6 cc/s, the bubble plume spread approximately as the 
square-root of distance above the nozzle 

b, = 0.22;. (15a) 

For lower flow rates the spread rate was less and depended on the size as well as the 
number of bubbles. Larger bubbles tended to diverge less than smaller ones and an 
approximate average was b, = (0 .15+0.05)~~.  (15b) 

5. Implications for the plume structure 
A comprehensive description of the dynamics of bubble plumes has not yet been 

given, as they share the complexity of other turbulent flows. The approach taken by 
investigators has generally been that of finding an empirical model to fit a limited 
range of experimental conditions. Below we outline a model for bubble plumes over 
the range of QB studied. For these weak plumes with low void ratio the analysis is 
focused on the liquid flow. The photographs in figure 4 of the dyed liquid plume show 
a turbulent flow with an appearance similar to a buoyant plume or jet. In this case 
the plume is driven by bubbles, which are moving faster than the liquid. 

A bubble moving a t  constant velocity w, relative to a liquid imposes a drag force 
equal to its buoyancy. Equating the drag force to the change in total momentum M 
of the liquid flow gives 

dz wB 

where wB = the absolute velocity of a bubble. As noted above wB was found to be 
constant along the plume so the right-hand side of (16) must be constant and the 
total momentum must increase linearly. 

The photographs of figure 4 show that the bubbles are confined to a narrow plume 
about 5 the diameter of the turbulent liquid plume. Also evident is the small volume 
of this bubble plume that is occupied by air. The mean void ratio E calculated by 
counting the number of bubbles contained in a unit length of plume occupied by the 
bubbles and dividing the resulting volume by b, gives E x 0.1 near the source and 
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e NN 0.013 near the free surface. In the analyses of larger air flow plumes by Milgram 
(1983), Chesters, Doorn &, Goossens (1980) and Goossens (1979) the void ratio 
distribution was treated like the density difference in a pure plume, that is, as a 
continuous variable. This approach was also taken by Durst et al. (1986) in the 
analysis of much sparser plumes. 

Let us first evaluate the properties of the liquid plume assuming that the velocity 
profiles are similar as in a water jet or pure plume and ignoring the momentum and 
volume of the bubbles. A reasonable profile is the Gaussian distribution 

(17) 

(18) 

and the momentum is ML=+npw2,b2. (19) 

a 2  w = w e-T/b, L 

with characteristic radius b and maximum centreline velocity wL. With this profile the 
liquid volume flux is Q ,  = XW, b2 

Inserting M ,  as the minimum value of M in (16) and substituting the result (11) in 
(is), produces a quadratic equation for the maximum value of wL allowed by 
conservation of momentum. I ts  solution is 

w L ( ~ ~ ~ )  = 8 - W, + [w; + 1.6gQi]i}. (20) 

Example points are represented as crosses on figure 7. The line equation (13) is a fit 
to these points. Acknowledging the large uncertainties in the measurements of wB 
and in the value of w,, this result indicates that  most of the momentum is associated 
with the mean flow rather than the turbulence. 

Using (11) and the observation that wL is independent of height above the source, 
(18) yields an expression for b : 

b = 0.37&~065(.z-x,)~. (21) 

The discrepancy with (14) is not surprising in view of the wandering of the bubble 
column. The bubbles rise two or three times faster than the liquid velocity and in the 
time interval during which the outermost plume fluid rises to the top of the tank, the 
centre of the bubble column, which corresponds to the maximum of the liquid 
velocity, drifts around the liquid plume cross-section. This leads periodically to 
higher entrainment and lateral expansion a t  first one side of the plume and then the 
other. When averaged over time this results in a dyed visible plume which spreads 
more rapidly than if the bubble column were fixed a t  the centre, even if the 
instantaneous half-width may be represented by a square-root growth with height. 

Although our measurements and the conservation laws provide a consistent model 
of the plume structure, they offer little insight into its dynamics. In  describing the 
dynamics of single-phase jets, plumes and thermals, i t  is generally recognized that 
these flows increase their volume flux by the engulfing of surrounding fluid by large- 
scale eddies (Turner 1986). The entrainment hypothesis of Morton, Taylor & Turner 
(1956), which works well for single-phase flows, is that ‘the mean inflow velocity 
across the edge of a turbulent flow is assumed to be proportional to a characteristic 
velocity, usually the local time-averaged maximum mean velocity or the mean 
velocity over the cross-section a t  the level of inflow ’ (Turner 1986). In  a homogeneous 
environment this is equivalent to  assuming dynamic similarity of the turbulent 
structure as well as the mean flow, so that the strength of the entraining eddies is 
directly related to the centreline velocity. 

The entrainment assumption is used with the conservation equations for mass and 
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momentum to find the structure of the flow. For a Gaussian velocity distribution in 
a round plume, it gives 

d&L dz = a2nbw,, (22) 

where a is the entrainment constant, which is 0.054 for jets and 0.083 for single phase 
plumes. Solution of (22) using (16), (18) and (19) yields 

The measurements discussed above show a square-root variation Tor Q L  with QB, and 
a plume radius b which is only very weakly dependent on QB; however, the more 
important relationships with elevation are not followed for any of the properties. 
This indicates that either the profiles are not similar or a is not constant. The bubble 
column wandering mentioned above would tend to produce a long time-averaged 
profile which is flatter at the centre and steeper a t  the edges than a Gaussian profile, 
and changes with height as the relative bubble displacement increases. This changing 
profile may contribute to the variation of the entrainment coefficient. 

The idea that the entrainment assumption, in the simple form described by (22), 
is not appropriate to bubble plumes has been indicated before. Tacke et al. (1985) 
produce a figure showing the very diverse values of a calculated by different workers. 
Hussain & Narang (1983) weighted the velocities of liquid and bubbles to find a 
scaling velocity, but in our case a would still be a constant with height. Milgram 
(1983) calculated the entrainment coefficient for bubble plumes of various scales and 
correlated it with a ‘bubble Froude number’, which was a ratio of various local 
plume properties. This correlation does not, however, apply for our very weak 
plumes. 

The concept of similarity of the mean and turbulent parts of the flow is not 
supported by consideration of the bubble plume structure, and in the remainder of 
this section we shall consider an alternative description of the plume. First, for 
completeness, we should take into account the added mass. In  the flow establishment 
zone acceleration of the bubble involves the acceleration of a volume of water 
approximately one half of the bubble volume to the speed w,. This is the ‘added 
mass’ contribution to the momentum of the flow (Clift et al. 1978). 

The ratio of added-mass momentum to the increase in total momentum over a 
distance Az is 

This ratio < 1 for Az 10 cm in all cases. For example, the largest observed value 
of wB was about 42 cm/s so for Az = 10 cm the rate of increase of momentum using 
(16) is 0.09. It is thus evident that the part of M transported by the added mass in 
the established flow zone is small. Most of M is associated with steadily rising liquid. 

We now consider the flow produced by the steadily rising bubbles and the 
contribution to the plume of distinct bubble wakes and the background ‘jet’ flow. 

The photos and measured velocities reveal a pattern of uniformly sized bubbles 
spaced 2 bubble diameters apart along the vertical and spread over a lateral area 
which increases from 1 to 5 bubble diameters in width. The slip velocity of 23 cm/s 
is from 1.5 to 3 times the absolute velocity of the steady but turbulent liquid flow. 
There should thus be a discernible wake for each bubble which spreads laterally at  
a small angle. In  the upper parts of the plume the wakes should extend downstream 
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for at least 10 bubble diameters before intersecting another wake. After interaction 
with other wakes the individual flows should merge and become part of a flow which 
is steady relative to the source. We can thus separate the liquid plume into two 
regions. The inner region contains the bubbles and the flow consists of a collection of 
bubble wakes superposed on a constant background velocity. The wider outer region 
contains no bubbles and is a steady turbulent shear flow produced by the 
amalgamation of wakes which entrains liquid from the quiescent environment. 

We can also consider the plume to have two components. The background flow in 
the inner region and the flow in the outer plume form a wide flow which is steady 
relative to  the source. This is a mixing zone similar to a jet, except that momehtum 
is continually supplied in the inner region by the wakes of the bubbles. The near 
wakes of the bubbles have large turbulent intensities, and mean velocity which is 
steady relative to the bubble but unsteady relative to the source. Figure 8 has been 
prepared to illustrate the magnitude of the steady and unsteady components for an 
elevation of 30 cm in a bubble plume driven by QL = 1 em3/s. The upper part of the 
figure shows the bubbles producing high-velocity wakes which merge into the 
background liquid jet flow, which is sketched in the lower part. The mean and 
turbulent velocities in the bubble wake have been scaled from the measurements of 
Uberoi & Freymuth (1970) who studied the wakes behind a solid sphere, and those 
for a liquid jet from the measurements of a pure jet made by Albertson et al. (1950). 
The comparison between a solid sphere and a bubble is reasonable since in even 
slightly contaminated water the no-slip condition applies a t  the surface of an air 
bubble (Clift et al. 1978). The main difference is that the ellipsicity of the bubble leads 
to an increased drag coefficient, if the Reynolds number is based on the diameter of 
an equivalent sphere. 

The unsteady flow field in an individual bubble wake can be defined by considering 
the motion relative to  the bubble. Buoyancy of the bubble is balanced by the drag 
and this must be equal to the momentum defect in the wake as discussed by 
Schlichting (1979) : 

D = P ~ C  u(w,-u)d(r2)+P7C (U’)’d(r2), (25) Jom JOrn 
where u is the wake velocity relative to the background flow and r the radial distance 
from the centre of the plume. When u is small relative to w,, and assuming that both 
mean and turbulent velocities follow similar profiles, it is readily shown that 

u = const x w,(cD d2/z2)f; b, = const x (cD d2x)f, (26) 

where cD is the drag coefficient, d the diameter of the sphere and b, the wake radius. 
It follows that the discharge and momentum in the wake relative to the background 
flow are 

(27) 

In this frame of reference, there is no entrainment into the wake and there is a loss 
of momentum. Relative to the bubble, Q increases with x and M is constant. The 
measurements of Uberoi & Freymuth (1970) confirm (26) for x/d > 30 and show 
that Q, is constant (although the profile shape changes) for 19 < x/d at  

Q, = nub: = const x w,cDd2; M ,  = $u2b: = const x w,2(cDd2)ix-9. 

Q, = 0.0417~w,d~. (28) 

Taking into account the greater drag of an ellipsoidal bubble relative to  a sphere of 
the same volume, the drag would be larger by a factor of 4.5* 1 for the bubbles in 
our experiments. 

4 FLM 205 



92 A . M .  Leitch and W. D .  Baines 

4 

T Flow 

relative 
to 

liquid 

Liquid 
jet 

flow 
I 

FIGURE 8. Sketch of distributions of mean velocity and turbulent intensity which probably exist 
in a plume at z = 30 cm driven by &, = 1 cm3/s. Bubble wake velocities determined from 
measurements of wake of a sphere. Liquid jet velocities determined from measured Q, and 
measurements in a free jet. 

We can write the liquid volume flux due to the ' jet '  and the wakes as 

QL = nwL b2 + knub:, (29) 

where k is the number of distinct wakes at a given level. Taking about one bubble 
per centimeter and assuming the wakes are distinct for about 10 bubble diameters 
gives E x 4. At mid-tank level ( z - z o  = 20 em) the volume flux in each bubble wake 
is about 2% of the total liquid flux, so the discharge in the wakes is only about 8% 
of the total. It is instructive to compare the momentum of the two components. The 
total momentum flux for Gaussian mean velocity profiles is 

M = r~p(+w;  b2 + (w; b')* +$u2b: + k(u'b;)'+ k w ,  ub;) ,  (30) 
(1) (11) (111) (IV) (V) 

where the terms and relative values a t  z = 20 are: (I) jet mean flow z 89% of 
total momentum; (11) jet turbulent flow z 4% of total; (111) sum of k wakes mean 
flow M < 1 YO of total. k has been taken as 4 for this calculation ; ( IV) sum of k wakes 
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QB(CC/S) 0.42 1.07 1.61 3.3 6.25 

0.26 0.34 0.43 0.48 0.64 
dz measurement 

TABLE 4. Ratios of fluxes : wake entrainment to plume entrainment 
1 "[ theory 

turbulent flow w < 2 YO of total ; (V) interaction of k wakes and mean flow w 5 YO of 
total. Terms (I) and (11) increase linearly with z and the others are approximately 
constant along the plume so term (I) increases in importance with elevation. For 
example, a t  z = 5 ern in the above example term (I) is 72%. These figures are only 
approximate and vary between experiments, but they are consistent with our earlier 
observation that most of the momentum of these sparse bubble plumes is associated 
with the mean flow. In  each bubble wake the turbulent component is about the same 
as the mean flow component, but distinct bubble wakes contribute relatively little to 
the total momentum. 

While their momentum is small, bubble wakes are central to  the dynamics of the 
plume ; in particular, entrainment into the plume is linked to entrainment into the 
bubble wakes. Since the measurements of Uberoi & Freymuth (1970) show that Q, 
is constant for xld > 19 (the closest measurement that they made to the sphere) it 
is concluded that all of the entrainment to the wake of a moving bubble occurs in a 
short distance behind the bubble as sketched in figure 8. Thus, the central region of 
the flow is made up of moving sinks, one behind each bubble. At any instant, these 
sinks are entraining liquid from the outer region over short distances behind each 
bubble. The integration of all the entrainments is a uniform inflow along the length 
of the plume, the magnitude of which can be estimated from Q,  for a single bubble. 
If the entrainment occurs over a short length and the mean number of bubbles per 
centimeter is N then (from (28)) the inflow to all wakes is 

* = 0.041 (A) nw, d i N  
dz 'Dsphere 

The ratio of this entrainment flux to  that observed for the plume (equation (11)) 
is given in table 4. It is seen that entrainment into the bubble wakes is a significant 
proportion of the entrainment into the liquid plume, and that the ratio increases with 
gas flow rate. 

The near wakes of the bubbles are at the centre of the liquid plume whereas 
entrainment from the environment occurs at its boundary from larger scale eddies 
that are the product of the accumulated, interacting wakes. It is therefore reasonable 
that the entrainment flux into the plume is related, but not equal, to entrainment 
into the near wakes. For the smallest gas flow rates in our experiments, the liquid 
'jet ' entrained four times as much from the environment as the wakes did from the 
jet, whereas for the largest gas flow rate the jet entrained less than twice as much as 
the wakes. This difference may be due to the more widely spaced bubbles (relative 
to bubble size) in the weaker flows creating relatively larger entraining eddies. 

4-2 
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FIQURE 9. The liquid volume flux as a function of height for a range of gas glow rates Q, at the 
nozzle (SI units). The sources of the data and the submergence depth of the nozzle are: 

Present work _ _ _  
'Goossens ( 1979) 0 

Tekeli & Maxwell (1980) A 
Milgrm & Van Houten (1982) V 

Fannelop & Sjoek (1974) + 
X 

* 
Milgram (1 983) 

0 
0 
0 

H (cm) 
40 
28 
28 

100 
3660 
3660 
1000 
1000 
1000 
5000 
5000 
5000 
5000 

Qo (m3/s) 
0.41-6.3 x 
2.8 x 
5.6 x 10-5 
1.29 x 10-4 
i .55 x 10-4 
1.72 x 10-3 
2.53 x 10-3 
5.05 x 10-3 

4.07 x 10-3 
1.01 x 10-2  

2 x 1 0 - 2  
4.8 x 
0.1 
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FIGURE 10. The exponent m as a function of Qo for the data in figure 9, assuming power-law 

growth of the liquid volume flux Q,. Symbols are defined in figure 9. 

6. Comparison with other investigations 
It is instructive to compare these measurements to those reported in the literature 

for a wide range of conditions. The data available cover water depths up to two 
orders of magnitude, and normalized gas flow rates up to six orders of magnitude, 
greater than the values reported above. All of these are plotted on figure 9 as the 
liquid volume flux as a function of elevation above the source. It is evident that there 
is a smooth progression in flux as either the elevation or the air flow is increased. The 
various sets of points are identified by the air flow Q, in m3/s as the nozzle. This 
contrasts to the usual comparison of flow at atmospheric pressure but it is used to 
account in a crude way for the second parameter which affects the plume 
development. As the bubbles rise the volume expands because of the reduction in 
static pressure. The change is small for nozzle submergence of less than a meter but 
is a factor in all of the larger scale experiments. An empirical correction scheme could 
be employed as was done by Tekeli & Maxwell (1980) but this does not appear to be 
worth the effort. 

Note first that the empirical power-law increase in QL with height holds 
remarkably well over the entire range of conditions, and second that the steepness 
of the lines increases systematically with &, and H .  The power law m = 1 obtained 
for our experiments is consistent with the trend of the data for larger scale plumes. 
figure 10 is a plot of the slope m with gas flow rate Q,. The symbols indicate the height 
dependence. It is interesting to note that the slope is of the order 312 for large scales 
and that this is the value for similarity and a constant entrainment coefficient. 

It is physically reasonable that the liquid volume flux should increase more rapidly 
in deeper water because the size of the bubbles and hence their buoyancy then 
increases significantly. An increase with gas flow rate might be accounted for by the 
fact that a t  higher gas flow rates the high void fraction near the nozzle means that 
there is not much liquid between the bubbles. As the bubble cloud spreads out more 
liquid is entrained. There is some uncertainty in the value of m for each line, because 
it depends on how much weight and reliance is put on the data point at the lowest 
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elevation. The clustering of the points suggests that the submergence depth is more 
important than the gas flow rate in determining m. 

Tacke et al. (1985) took a series of very careful measurements of e as a function of 
r and z for a range of Q, and solved the momentum equations to  find a best value 
of constant a for their data. However, their measurements of em,, and be, when put 
together with their other assumptions, are consistent with a constant value of a. 
According to their data, a decreases by a factor of 2 to 2.6 over the height of their 
reservoir between 5 and 40 cm. It is evident in this case also that the entrainment 
coefficient does not scale simply with the maximum liquid velocity. 

Milgram (1983) and Goossens (1979) both point out that the momentum equation 
should include the contribution of turbulent fluctuations to the momentum flux. 
They found in some cases only a half to  three-quarters of the momentum flux was 
carried by the mean momentum. Milgram introduced a ‘ momentum amplification 
factor ’ y ,  which is the total momentum divided by the momentum carried by the 
mean flow. Milgram (1983) found a correlation of his measured y with a dimensionless 
number that he called the ‘phase distribution number ’, but it is not applicable a t  the 
low gas flow rates of the present work, since i t  predicts y values of several hundred. 
He also found y < 1 a t  large gas flow rates and this requires that the turbulent 
momentum be negative. This is impossible so there must be other factors in the flow. 
One of these is the momentum carried by the unsteady flow in the wakes. This would 
appear as turbulence if measurements were made of the mean and fluctuating 
velocities using a standard technique. 

7. Conclusions 
A method is outlined by which the liquid flux is carried by a bubble plume can be 

measured as a function of elevation. The method involves observations of a moving 
interface. created by the plume in a stratified, confined environment. There are 
practical limits on the scale of the plume that can be studied in the laboratory but 
the method could be applied in many field studies. For example, if Bugg Spring 
contained a density stratification, at Milgram’s (1983) largest gas flow rate the 
interface would traverse a depth of 37 m in about an hour and a half. The lower limit 
of plume size is dictated by the plume being turbulent, since for laminar plumes a 
sharp interface does not form. 

The method was used to find the liquid flux as a function of elevation and gas 
flow rate for a bubble plume from a single nozzle for gas flow rates between 0.41 and 
6.25 cc/x and over a height of about 40 cm. It was found that (equation (11) )  

1 

QL = 5 . 0 & ~ ( ~ - 2 , ) .  

Other observations of the plume structure revealed that the maximum liquid 
velocity in the plume was approximately constant over the height range at (equation 

(13)) wL = 11.3Qt3’, 

the bubble plume spread as the square-root of height (equation (15b)) 

b, = 0.15+0.05&. 

Dying the liquid plume did not give a realistic estimate of its shape because of plume 
wandering. The linear growth of QL and the constancy of wL with x together imply 
the square-root growth of the plume width. Calculations indicate that most of the 



Liquid volume jlux in a weak bubble plume 97 

momentum is associated with the mean flow rather than the turbulence of the liquid 
plume, hence the width is approximately (equation (21)) 

b = 0.37&0,.065(2- zo)+. 

The ratio of width of bubble region to width of turbulent region is 0.4f0.15. The 
equivalent density/velocity width ratio of a pure plume is of order unity. 

The entrainment assumption of Morton et al. (1956) in its simplest form (equation 
(22)) is not appropriate to these bubble plumes : it  predicts a liquid volume flux which 
increases as d (equation (23)). Thus the entraining eddies a t  the edge of the flow do 
not scale simply with the centreline liquid velocity. An alternative model, where 
entrainment into the plume is controlled by entrainment into the near wakes of the 
individual bubbles, gives the correct linear variation of the liquid flux with height. 
The magnitude of near-wake entrainment is less than that of the plume, since the 
bubbles entrain from the liquid plume rather than directly from the environment. 

It is not expected that these features of the plume structure will necessarily hold 
for plumes of larger scales than those studied, since they may rest on the bubbles 
preserving distinct wakes for several diameters. However, the liquid volume flux of 
plumes orders of magnitude larger does increase with height approximately according 
to a power law, with the exponent increasing with nozzle submergence and gas flow 
rate a t  the nozzle as shown in figure 10. Equation (11) is consistent with the trend 
of the other data. 
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